منتديات الالكترونيات العصرية  
yoursite.com page title .

استرجاع كلمة المرور طلب كود تفعيل العضوية تفعيل العضوية
العودة   منتديات الالكترونيات العصرية > منتدى الحاكمات الدقيقة Microcontroller > منتدى المتحكمات القابله للبرمجه plc

  #1  
قديم 06-27-2020, 11:12 PM
الصورة الرمزية F.Abdelaziz
F.Abdelaziz F.Abdelaziz غير متواجد حالياً
استاذ الكترونيان
 
تاريخ التسجيل: May 2009
المشاركات: 2,819
معدل تقييم المستوى: 23
F.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to behold
افتراضي المتحكم المنطقى القابل للبرمجة (plc) ومنطق السلم l

المتحكم المنطقى القابل للبرمجة (PLC) ومنطق السلم Ladder Logic

الدرس الأول :

أساسيات المتحكم المنطقى القابل للبرمجة (PLC) Programmable Logic Controller


وحدة المتحكم المنطقى القابل للبرمجة هي وحدة (نظام) تحكم رقمى مصممة خصيصًا والتى تعتمد على معالج دقيق (ميكروبروسسور microprocessor ) ويمكن برمجتها بسهولة لأداء مهام تحكم معقدة. لقد تم تصميمها خصيصًا للتطبيقات الصناعية من أجل توفير التحكم control والأتمتة automation للآلات والعمليات بدقة accuracy عالية وموثوقية reliability . غالبًا ما يتم اختصار وحدة المتحكم المنطقى القابل للبرمجة إلى PLC.

المتحكم المنطقى القابل للبرمجة PLC لديه بعض التشابه مع الكمبيوتر الشخصي (PC). فهو يحتوي على معالج دقيق microprocessor وذاكرة , memory وواجهات interfaces مدخلات input ومخرجات output . ومع ذلك ، على عكس جهاز الكمبيوتر ، لا يحتوي على لوحة مفاتيح أو ماوس أو شاشة أو قرص صلب . وقبل أن تسأل ، لا - لا يمكنه تصفح الإنترنت ، أو التحقق من حالة وسائل التواصل الاجتماعي الخاصة بك أو تشغيل الموسيقى والألعاب المفضلة لديك.



أهم فرق بين وحدة المتحكم المنطقى القابل للبرمجة (PLC) والكمبيوتر الشخصي هو أن نظام تشغيل PLC مستقر للغاية extremely stable وموثوق به reliable مقارنة بالكمبيوتر الشخصي. تم تصميم PLCs خصيصًا لاستخدامها في تطبيقات الأتمتة الصناعية ، لذا فهي تحتوي أيضًا على أغطية قوية robust housings ، وحصانة أعلى للتداخل interference immunity ، وبروتوكولات اتصالات صناعية مدمجة built-in ، وهي قادرة على التفاعل بكفاءة مع كميات كبيرة من أجهزة الإدخال والإخراج.

نبذة تاريخية عن المتحكم المنطقى القابل للبرمجة :
مخترع PLC هو ديك مورلي ، وهو مهندسًا أمريكيًا كان خبيرًا في مجال تصميم الكمبيوتر والذكاء الاصطناعي والأتمتة والذي حصل على العديد من جوائز الصناعة طوال حياته المهنية. ولد في كلينتون ، ماساتشوستس في 1 ديسمبر 1932 وتوفي في 17 أكتوبر 2017 ، في نيو هامبشاير.
يرجع الفضل إلى ديك مورلي في اختراع المتحكم المنطقى القابل للبرمجة في عام 1968 ، وهو يقود الفريق الذي قاد تطوير أول PLC عندما كان في بيدفورد وشركاه. تم دعم اختراع PLC للحاجة إلى أتمتة منشأة إنتاج جنرال موتورز.
أول وحدة تحكم منطقى قابل للبرمجة كانت تسمى Modicon PLC. كان الاسم نسخة مختصرة من modular digital controller . أدى إدخال Modicon PLC إلى إحداث ثورة في الصناعة وكيفية أتمتة العمليات والآلات الصناعية.
كانت شركة Modicon هي الشركة التي أنشأت Modicon PLC في عام 1968. ولكن منذ ذلك الحين كانت Modicon مملوكة لشركة AEG وهي مملوكة حاليًا لشركة Schneider. لقد قطعت PLCs طريقًا منذ تأسيسها قبل ما يزيد عن 50 عامًا.

فيما تستخدم وحدات المتحكم المنطقى القابل للبرمجة ؟
تستخدم وحدات المتحكم المنطقى القابل للبرمجة لأتمتة automate المهام التي يتم التحكم فيها تقليديًا من خلال أنظمة التحكم بمنطق المرحلات (الريلايات) relays المربوطة (المتصلة) سلكيا hardwired . تستخدم PLCs لأتمتة المهام مثل الدفع pushing والرفع lifting والفرز sorting والقطع cutting والتقليب flipping والوزن weighing والنقل transporting والغسيل , washing والتجفيف drying والتراص stacking واللحام welding والصنفرة sanding وما إلى ذلك. المهام التي يمكن استخدام PLC للأتمتة لا نهاية لها عمليًا.
الفرق بين PLC والمرحل (الريلاى) relay هو أن PLC هو جهاز يعتمد على المعالج الدقيق microprocessor في حين أن المرحل هو جهاز تحويل switching كهروميكانيكي. من أجل توفير تحكم ذكي في العمليات والآلات ، يجب برمجة جهاز المتحكم المنطقي القابل للبرمجة (PLC) بينما يلزم توصيل wired المرحلات مع مرحلات أخرى.
نظرًا لأن بنية PLC تعتمد على معالج كمبيوتر دقيق ، فلا يتم تقييدها لإجراء عمليات نوع منطق توصيل المرحلات سلكيا فقط. يمكن أيضًا أن تتحكم وحدات التحكم المنطقية القابلة للبرمجة في عمليات أخرى مثل المقارنة comparison والرياضيات mathematics والتوقيت timing والعد counting والتسلسل (التتابع) sequencing ومعالجة الإشارات التناظرية ومعالجة البيانات والمزيد.
التطبيقات الصناعية لأجهزة PLC عديدة. يتم استخدامها لأتمتة التطبيقات مثل خطوط التجميع ، وأنظمة التهوية والضخ ، ومصانع التغليف ، والروبوتات ، وناقلات مناولة المواد ، وآلات التخزين والاستصلاح ، وأنظمة التعبئة والتغليف ، ومصانع الطحن ، وأنظمة إدارة المباني وما إلى ذلك. قائمة التطبيقات غير محدودة تقريبًا .
لقد اخترقت وحدات التحكم المنطقية القابلة للبرمجة في كل صناعة تقريبًا. تشمل بعض الصناعات التي تستخدم PLCs ، على سبيل المثال لا الحصر ، التصنيع والتعدين والنفط والغاز والأغذية والمشروبات والخدمات اللوجستية ومناولة الأمتعة ومعالجة الأخشاب والري ومعالجة مياه الصرف الصحي وتصنيع المعادن واللحام والمنسوجات والمعالجة الكيميائية.

ما هي مزايا وعيوب PLC؟
لإدراك مزايا وعيوب وحدات التحكم المنطقية القابلة للبرمجة ، نحتاج إلى مقارنتها مع أنواع أخرى من أنظمة التحكم.

أنواع المتحكمات الرئيسية الأربعة المستخدمة في أنظمة التحكم الصناعية هي منطق المرحلات relay logic ، وأجهزة الكمبيوتر الصناعية industrial PCs ، وأجهزة المتحكمات الدقيقة microcontrollers ، وأجهزة التحكم المنطقية القابلة للبرمجة PLCs . لكل نوع من أجهزة المتحكمات مزاياه وعيوبه. يعتمد نوع وحدة المتحكم الأنسب على نوع وحجم تطبيق الأتمتة.
إن PLCs هي الأنسب لأتمتة كمية كبيرة من مهام الأتمتة ، مثل مصنع التصنيع. تعتبر المرحلات Relays هي الأنسب للأتمتة مهمة بسيطة يدوية بالكامل ، مثل التحكم في مستوى القادوس hopper.
تعتبر وحدات المتحكمات الدقيقة Microcontrollers الأنسب لأتمتة تطبيق بمجموعة ثابتة من البارامترات ولديها إمكانية الإنتاج الضخم mass production ، مثل الغسالة washing machine . في حين أن جهاز الكمبيوتر الصناعي Industrial PC سيكون الأنسب عندما تكون هناك حاجة إلى درجات عالية من حساب الرياضيات ، مثل جهاز محاكاة الطيران.
الفرق بين PLC و المتحكم الدقيق (الميكروكونترولر) يكمن في بنية الوحدات. يحتوي كلاهما على معالج دقيق مع مدخلات ومخرجات (وحدات دخل ووحدات خرج) ، ولكن تم تصميم PLC ليكون قابلاً للتوسيع وقبول ومعالجة كميات كبيرة من المدخلات والمخرجات I / O ويكون قادرًا على التواصل مع الأجهزة الأخرى. في حين أن الميكروكونترولر عادة ما يتم إنشاؤه لغرض واحد لمهمة أتمتة معينة ، بتكلفة أقل وعادة لأغراض الإنتاج الضخم.

ما هي مزايا PLC؟
المزايا الرئيسية لأجهزة PLC مذكورة أدناه:
1. مدمجة وقوية Compact and robust.
2. نظام تشغيل موثوق به للغاية.
3. سرعة زمن تنفيذ المعالج.
4. لا تحتاج إلى صيانة تقريبا.
5. قابلة للتوسيع بسهولة بسبب تصميمها المعياري modular.
6. انخفاض استهلاك الطاقة مقارنة بأنظمة المرحلات .
7. مدمج بها اتصالات communication من أجل I / O المداخل والمخارج عن بعد ، والأجهزة instrumentation ، وPLCs الأخرى وأنظمة SCADA.
8. يمكن التعامل مع عدد كبير من المدخلات والمخرجات الرقمية.
9. قادرة على معالجة إشارات الإدخال التماثلية وحلقات PID.
10. لغات برمجة متعددة متاحة.
11. مجموعة تعليمات البرمجة الكبيرة.
12. واجهة برمجة سهلة الاستخدام عبر الكمبيوتر.
13. التحكم في التعديلات المنطقية التي تتم بسهولة عبر البرامج ، لا يلزم إدخال تعديلات على وصلات الأسلاك .
14. انخفاض تكاليف التركيب Installation بشكل كبير مقارنة بأنظمة المرحلات .
15. سهولة توثيق documentation ممتازة.
16. زيادة القدرة على اكتشاف الأخطاء والتشخيص diagnostics.

ما هي عيوب PLC ؟
1. بالنسبة للتطبيقات البسيطة حيث قد يكون منطق المرحلات كافياً ، قد يؤدي استخدام PLC إلى دفع تكاليف بسبب الحاجة إلى توظيف مبرمج.
2. وظائف الرياضيات في PLC متقدمة جدًا ، ولكن عندما يتعلق الأمر بإجراء كميات كبيرة من حسابات الرياضيات المعقدة ، فقد يكون الكمبيوتر الصناعي أكثر ملاءمة.
3. قد تتطلب بعض التطبيقات الروبوتية وتحديد المواقع تنفيذ سرعة عالية للغاية والتي قد لا يكون من الممكن تحقيقها من PLC.
4. يمكن أن يكون مكلفا لأتمتة تطبيق مع بارامترات ثابتة للإنتاج الضخم بالمقارنة مع الميكروكونترولر .


كيف يعمل PLC؟
العناصر الأساسية في عمل PLC هي وحدة المعالجة المركزية (CPU) ، وذاكرة البيانات data memory ، وذاكرة البرنامج program memory ، ووحدات الإدخال input modules ، ووحدات الإخراج output modules . تقوم وحدة المعالجة المركزية فى PLC باستمرار بمراقبة إشارات الإدخال input signals ، وصياغة القرارات بناءً على برنامج التطبيق application program ، ثم تتحكم في إشارات الإخراج output signals لأتمتة عملية أو آلة. يقوم المتحكم المنطقي القابل للبرمجة بتخزين برنامج التطبيق في ذاكرة البرنامج وتخزين حالة المدخلات والمخرجات في ذاكرة البيانات.
وحدة المعالجة المركزية المستندة إلى المعالجات الدقيقة هي التي تتحكم في العمليات داخل PLC. يبسط مخطط الكتل block diagram أدناه تدفق العملية داخل PLC. تتم قراءة read المدخلات وتخزين حالتها في ذاكرة البيانات ، ويتم نقل البيانات transferred إلى برنامج التطبيق ومعالجتها processed ، ويتم تحديث updated ذاكرة البيانات وأخيراً يتم تنفيذ executed المخرجات.





المدخلات Inputs هي أجهزة ميدانية field devices مثل الأزرار button والمفاتيح switches والأجهزة instrumentation المستخدمة لتحديد وقت وكيفية عمل الماكينة. يتم توصيل المدخلات مباشرة إلى PLC أو عبر وحدات الإدخال input modules .
المخرجات Outputs هي أجهزة ميدانية مثل المرحلات relays ، وموصلات المحرك (الكونتاكتور) motor contactors ، وصمامات الملف اللولبي (السلونويد) solenoid valves ، والمصابيح lamps وصفارات الإنذار (السارينة) sirens التي تتسبب في تشغيل الماكينة وتقديم ملاحظات (تغذية عكسية) feedback لمشغل الماكينة. يتم توصيل المخرجات مباشرة من PLC أو عبر وحدات الإخراج output modules .
ذاكرة البيانات Data Memory هي المكان الذي يتم فيه الإعلان declared عن المدخلات والمخرجات وتخصيصها لمواقع الذاكرة. تقوم ذاكرة البيانات بتخزين حالة المدخلات والمخرجات ويتم تحديثها باستمرار بواسطة برنامج التطبيق.
ذاكرة البرنامج Program Memory هي المكان الذي يتم فيه تخزين ومعالجة برنامج التطبيق (مثل مخطط السلم ladder diagram ). يجب تحميل ذاكرة البرنامج ببرنامج حتى يتمكن من القيام بالأشياء. إذا لم يكن هناك برنامج تطبيق محمل في ذاكرة البرنامج ، فإن PLC هو مجرد وزن باهظ الثمن.

مبدأ عمل المتحكم المنطقى القابل للبرمجة PLC
على الرغم من أن PLC يحتوي على وحدة معالجة مركزية CPU تمامًا مثل جهاز الكمبيوتر ، إلا أن العملية الداخلية ليست هي نفسها تمامًا. تم تصميم PLCs لتكون موثوقة للغاية وبالتالي لديها عملية داخلية ثابتة fixed ومخصصة dedicated . هذه العملية تسمى "دورة مسح PLC" PLC scan cycle .
دورة مسح PLC هي عملية متسلسلة sequential ومتكررة repetitive لديها 3 مهام أساسية. تقييم المدخلات Evaluate inputs ومعالجة process برنامج التطبيق وتنفيذ المخرجات execute outputs . يتم تنفيذ المهام في دورة مسح PLC بدقة في ترتيب معين وبطريقة دورية لا نهاية لها.




قد تحتوي بعض وحدات المتحكم المنطقى القابل للبرمجة من جهات تصنيع مختلفة على اختلافات طفيفة في دورة المسح ، ولكن المهام الثلاثة المذكورة أعلاه مشتركة للجميع.
يعد "مسح PLC " PLC scan جزءًا من المهمة الثانية (معالجة البرنامج process program ) في دورة المسح وتشير إلى الطريقة التي تعالج بها وحدة المعالجة المركزية برنامج التطبيق. أثناء مسح PLC ، تتم معالجة درجات rungs برنامج التطبيق من اليسار إلى اليمين ومن الأعلى إلى الأسفل. تعمل وحدة المعالجة المركزية باستمرار على تحديث حالة كل من المدخلات والمخرجات والمتغيرات الداخلية في ذاكرة البيانات ولكنها تنفذ المخرجات فقط في نهاية مسح PLC.





هناك أمر بالغ الأهمية للتذكر لأنه يمكن أن يؤثر على طريقة تقييم البرنامج. فقد يجبرك تسلسل مسح PLC على تعديل طريقة كتابة برنامج التطبيق الخاص بك لتحقيق نتيجة التحكم الصحيح في العملية .
وقت (زمن) المسح scan time هو إجمالي الوقت الذي يستغرقه PLC لإكمال دورة مسح كاملة. يتم التعبير عن زمن المسح بالمللي ثانية (مللي ثانية) milliseconds (ms) . يعد زمن مسح PLC مقياسًا أساسيًا للقياس والإدراك لأنه يمكن أن يكون له تأثيرات ضارة على قدرة PLC على التحكم في التطبيق ، خاصة إذا كانت سرعة تطبيقك أسرع من زمن مسح PLC.
باختصار ، مبادئ العمل الأساسية للمتحكم PLC هي أنه يراقب حالة الآلة والعملية ، ثم يتخذ قرارات على أساس الوظائف المنطقية التي أنشأها برنامج منطق السلم ladder logic المخزن في ذاكرة PLC. بعد ذلك ، يبدأ initiates جهاز المتحكم المنطقي القابل للبرمجة إشارات الإخراج للتحكم في سلوك الجهاز أو العملية.

أتمتة PLC PLC Automation
عندما يتعلق الأمر بالأتمتة الصناعية ، يعتبر PLC حرفياً "أدمغة brains العملية". إنه جهاز قابل للبرمجة يتخذ جميع القرارات المتعلقة بكيفية التحكم في الماكينة اعتمادًا على البيانات التي تم جمعها من الأجهزة الميدانية وتعليقات (رد فعل) feedback المشغل.
لفهم أفضل لأتمتة PLC يمكننا مقارنة كيفية عمل دماغ (مخ) الإنسان. إذا نظرنا إلى دماغ الإنسان ، فإننا ندرك أنه يعتمد على حواسنا الخمسة للبصر والسمع والشم والطعم واللمس لفهم ما تقوم به بيئتنا. أيضا ، يتحكم دماغ الإنسان في الحركة في جسمنا لإنشاء إجراءات actions مثل المشي والجري وركل الكرة وما إلى ذلك.
لذلك دعونا نقول أننا نشعر أن أجسامنا تزداد سخونة. عندئذ يمكننا رفع (تشمير) أكمامنا قليلاً حتى نبرد قليلاً. يمكننا في الواقع أن نرفع أكمامنا لأعلى ولأسفل لتنظيم درجة حرارة أجسامنا إلى أن نشعر بالراحة. إذا رفعنا الأكمام إلى النهاية وما زلنا نشعر بالحر الشديد بعد فترة معينة من الوقت ولا يمكننا تحملها أكثر من ذلك ، فيمكننا خلع سترتنا.



كيف يقوم المتحكم المنطقي القابل للبرمجة بأتمتة تطبيق صناعي؟
تمامًا كما يعتمد مخ الإنسان على المعلومات التي تقدمها حواسنا ، يتطلب المتحكم المنطقى القابل للبرمجة أدوات (أجهزة) instrumentation لقياس محيطها. هذه تُعرف باسم مدخلات PLC PLC inputs .
ومثلما يستخدم المخ البشري جمع البيانات من حواس الجسم ليقرر ما هي الإجراءات المطلوب اتخاذها ، يقوم PLC بجمع المعلومات من الأجهزة ويستخدم برنامج التطبيق لتحديد الإجراءات المطلوبة لاتخاذها.
يتم تخزين المعلومات التي يتم جمعها بواسطة الأجهزة في ذاكرة البيانات ويتم تخزين برنامج التطبيق في ذاكرة البرنامج.
أخيرًا ، تمامًا مثلما يتحكم المخ في الحركة في أجسامنا ، يتحكم PLC في الحركات في آلة تستخدم الأجهزة الكهربائية والهوائية والهيدروليكية. هذه تعرف باسم مخرجات PLC PLC outputs .

لنقم بتوصيل متحكم منطقي قابل للبرمجة مع أجهزة الإدخال والإخراج لتطبيق أساسي للتحكم في درجة الحرارة.
إذا قمنا بتوصيل مستشعر (حساس) sensor درجة الحرارة كمدخل PLC يمكننا قياس مدى سخونتة. ثم إذا قمنا بتوصيل مروحة كهربائية كمخرج PLC يمكننا تنظيم درجة الحرارة.



PLC هو مجرد مرساة قارب boat anchor إذا لم يكن لديه برنامج مخزن في ذاكرته. لكي يقوم PLC بأتمتة أحد التطبيقات ، نحتاج إلى تحديد أهداف التحكم الخاصة بنا حتى نتمكن من برمجة بعض التعبيرات المنطقية للتحكم.
يمكن أن يكون الوصف الوظيفي الأساسي لتطبيق التحكم في درجة الحرارة الأساسي كما يلى :
1. إذا زادت درجة الحرارة المقاسة أعلى من حد معين ، فيمكن لوحدة التحكم المنطقية القابلة للبرمجة تشغيل مروحة كهربائية لتبريد النظام.
2. إذا كانت درجة الحرارة التي تم قياسها تزيد أو تنقص ، يمكن لوحدة التحكم المنطقية القابلة للبرمجة ضبط سرعة المروحة لتنظيم درجة الحرارة للحفاظ على مستوى معين.
3. بمجرد انخفاض درجة الحرارة إلى ما دون عتبة معينة ، لفترة معينة من الزمن ، يمكن إيقاف تشغيل المروحة الكهربائية.

تذكر أن مستوى أتمتة PLC يكون جيدا فقط مثل جودة المعلومات التي تم جمعها بواسطة الأجهزة وجودة برنامج التطبيق الموجود في ذاكرته. لذا فإن البرنامج الجيد ذو التعبيرات المنطقية الصلبة سيضمن لك عملية خالية من المتاعب.
يمكن PLC التحكم في تطبيقات الأتمتة الصناعية. عدد التطبيقات التي يمكن للمتحكم PLC التحكم فيها لا حصر لها ، ولكن هنا بعض الأمثلة ...
1. التحكم في مستوى خزان ماء من خلال مراقبة مستوى الخزان وتغيير سرعة مضخة المدخل.
2. التحكم في درجة حرارة فرن التجفيف من خلال مراقبة درجة حرارته الداخلية وتغيير موضع صمام التحكم في الموقد.
3. التحكم في تسلسل البدء والتوقف لسلسلة من ناقلات conveyors مناولة المواد.


نظام تحكم PLC
نظام تحكم PLC هو مزيج من مكونات الأجهزة hardware والبرامج software المختلفة. يلعب كل مكون دورًا محددًا ومهمًا في نظام تحكم PLC الشامل. العناصر الأساسية التي يتكون منها نظام تحكم PLC هي PLC نفسه ، وأجهزة الإدخال والإخراج الطرفية ، وواجهات الاتصال بين الآلة والبشر Human Machine Interfaces (HMI) وجهاز البرمجة.
تتضمن أجهزة إدخال PLC PLC Input devices أجهزة مثل المفاتيح switches وأجهزة الاستشعار sensors وأزرار الضغط push buttons . تتضمن أجهزة إخراج PLC PLC Output devices معدات مثل المحركات الكهربائية electric motors والمنفذات actuators . وهي إما متصلة مع PLC بأسلاك أو متصلة عبر ناقل المجال fieldbus (رابط الاتصال communication link ) مثل Ethernet IP و Profibus و Modbus وما إلى ذلك).
تشكل واجهات الاتصال بين الآلة والبشر Human Machine Interfaces (HMI) الجسر بين المشغل وجهاز المتحكم المنطقي القابل للبرمجة (PLC) من خلال السماح بالتحكم للمشغل وتقديم ملاحظات مرئية ومسموعة. وهي تشمل أجهزة مثل الشاشات التي تعمل باللمس وأنظمة SCADA (التحكم الإشرافي والحصول على البيانات Supervisory Control & Data Acquisition ) ولوحات التحكم السلكية التي تحتوي على مفاتيح وأزرار ضغط ولمبات بيان .
هناك حاجة إلى جهاز برمجة PLC PLC Programming device لتتمكن من تكوين (تهيئة) وبرمجة نظام تحكم PLC. في الماضي ، تم استخدام محطات برمجة مخصصة ، ولكن اليوم جهاز الكمبيوتر هو الأداة المفضلة.
يعمل نظام PLC PLC System عن طريق قبول (إستلام) إشارات جهاز الإدخال ، ومعالجة البيانات وفقًا للبرنامج المخزن في ذاكرة PLC ثم تنشيط المخرجات المناسبة للتحكم في الجهاز أو العملية.
فيما يلى رسم تخطيطي أساسي لأنظمة تحكم PLC :



نظرًا لأن وحدة المتحكم المنطقى القابل للبرمجة متخصصة في تنفيذ دورة المسح الخاصة به scan cycle والتي يؤديها بسرعة عالية وموثوقية عالية للغاية. هذا ضروري للحفاظ على موثوقية عالية للتحكم في آلة باستخدام PLC وأتمتة العمليات.
تخيل تعطل وحدة المتحكم المنطقى القابل للبرمجة ، تمامًا مثل نظام تشغيل الكمبيوتر المنزلي ، في منتصف عملية تشغيل الآلة . يمكن أن يكون هناك خطرًا على الأفراد والإنتاج والمعدات مما يتسبب في الإصابة والأضرار والتوقف عن العمل والنفقات غير الضرورية.
تم تصميم وحدات المتحكم المنطقى القابلة للبرمجة ، على عكس الكمبيوتر المنزلي ، للعمل في البيئات الصناعية القاسية حيث يوجد ضجيج كهربائي والتداخل الكهرومغناطيسي (EMI).
وهي تتطلب بشكل عام ، ولكن ليس دائمًا ، مصدر طاقة منفصل ولها وصلات (شرائط) طرفية للإدخال والإخراج لتوصيل الأجهزة الكهربائية. بالنسبة لبعض تطبيقات تحكم PLC في الماكينة ، عادة ما تكون وحدات الإدخال والإخراج القابلة للتوسيع عن بعد متاحة.
في هذه الأيام ، تحتوي أنظمة تحكم PLC في آلة على خيارات اتصال مثل Ethernet/IP (Allen Bradley) و Profinet (Siemens) و Modbus TCP/IP (Modicon) ، على سبيل المثال لا الحصر. تسمح خيارات اتصال نظام تحكم PLC في آلة مثل هذه بالربط الشبكي مع وحدات PLC الأخرى ووحدات الإدخال / الإخراج عن بُعد والأجهزة والمحركات والمنفذات وواجهات الاتصال بين الآلة والبشر (HMI) مثل شاشات اللمس وأنظمة SCADA.
في الدرس التالي ، سنفحص المفاهيم الثنائية binary والمنطقية logic الأساسية التي يجب معرفتها من أجل استيعاب برمجة منطق السلم بشكل كامل.
رد مع اقتباس
  #2  
قديم 07-01-2020, 11:24 PM
الصورة الرمزية F.Abdelaziz
F.Abdelaziz F.Abdelaziz غير متواجد حالياً
استاذ الكترونيان
 
تاريخ التسجيل: May 2009
المشاركات: 2,819
معدل تقييم المستوى: 23
F.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to behold
افتراضي أساسيات منطق السلم Ladder Logic Basics


الدرس الثانى :

أساسيات منطق السلم Ladder Logic Basics


"منطق السلم" Ladder logic هي لغة برمجة تُستخدم لبرمجة المتحكم المنطقى القابل للبرمجة (PLC). إنها لغة برمجة PLC رسومية graphical تعبر عن العمليات المنطقية بتدوين رمزي باستخدام مخططات السلم using ladder diagrams ، تشبه كثيرا قضبان rails ودرجات rungs دائرة منطق المرحلات التقليدية. يتم استخدامه من قبل المهندسين والكهربائيين لتنفيذ المهام المنطقية logical والتسلسلية sequential والعدية counting والتوقيتية timing والحسابية arithmetic من أجل تنفيذ تطبيقات الأتمتة الصناعية.

في الأيام الأولى ، تم إنجاز أتمتة الآلة والعمليات باستخدام نظام تحكم سلكي يعرف باسم منطق الريلاى (المرحل) relay logic . مع ظهور المعالجات الدقيقة واختراع PLC ، سرعان ما حل محل منطق الريلاى لغات البرمجة مثل منطق السلم ladder logic .
نظرًا لأن منطق السلم تم تصميمه في الأصل ليحل محل استخدام دوائر منطق الريلاى السلكي الثابت للتحكم في الماكينة ، فإن كود برمجة منطق السلم يبدو فعليًا مثل رسم تخطيطي كهربائي. قد تعتقد أن منطق السلم يبدو كلغة برمجة قديمة. لذا ، مع التطورات في البرامج التي قدمها العالم مؤخرًا ، هل لا يزال منطق السلم مستخدمًا؟
لا يزال منطق السلم مستخدمًا في برمجة PLC. إنها الطريقة الأكثر شيوعًا لبرمجة PLC. لا تزال برمجة منطق السلم مستخدمة اليوم لأن المبادئ المنطقية الأساسية الأساسية للتحكم في الآلة والعمليات لا تزال هي نفسها.
أدت التطورات في البرامج (البرمجيات) software إلى لغات برمجة PLC أخرى تكمل منطق السلم وتم تطوير برامج البرمجة والواجهة interface المحسنة بشكل كبير.
في برمجة PLC ، منطق السلم هو لغة برمجة تستخدم لتطوير التعبيرات المنطقية logic expressions من أجل أتمتة المهام. التطورات الحديثة في تكنولوجيا البرمجيات تعني أن برمجة PLC باستخدام منطق السلم قد تم توسيعها إلى العد ، والتوقيت ، والحساب ، والمتسلسلات ، والتحكم PID ، ووظائف معالجة البيانات والمزيد. على مر السنين ، تطور منطق السلم إلى لغة برمجة PLC قوية كما هي اليوم.

يستخدم منطق السلم على نطاق واسع لبرمجة PLC في العديد من تطبيقات الأتمتة الصناعية. إليك بعض الأمثلة ...
• نظام ناقل Conveyor مناولة المواد.
• تغليف البالتات وربطها.
• نظام تزييت محاور الدوران .
• نقل وفرز الحزم.
• خلط الأسمنت.
• تعبئة ووضع لافتات على المشروبات.
• التحكم فى مستوى الخزانات .
• تدفق الهواء والسائل والتحكم في الضغط.

يمكن أن تكون محاولة تعلم أساسيات منطق السلم مهمة شاقة. إذا كان لديك بعض الخبرة في الدوائر الكهربائية ، فيجب أن تكون مفاهيم برمجة PLC لمنطق السلم سهلة الفهم نسبيًا. وبخلاف ذلك ، استرخ ، فإن معرفة منطق السلم هو أسرع وأسهل لغة برمجة PLC للتعلم. من أجل مساعدتك على فهم أساسيات منطق السلم ، سنقوم بما يلى ....


• فحص الأجزاء الأساسية السبعة لمخطط السلم ladder diagram .
• التعرف على المفاهيم الثنائية binary والمنطقية logic المستخدمة في منطق السلم.
• الكشف عن وظائف منطق السلم المخفية التي يتم تضمينها تلقائيًا في هيكل مخطط السلم.
• اكتشاف الوظائف المنطقية الأساسية الخمسة التي لا بد من معرفتها.
فلنبدأ ...

ما هو مخطط السلم؟ What is a Ladder Diagram?
مخطط السلم هو نوع من الرسم التخطيطي المستخدم في الأتمتة الصناعية ويمثل دوائر التحكم المنطقية. تتكون مخططات السلم من قضيبى قدرة power rails رأسية ودرجات منطقية logic rungs أفقية لتشكيل ما يشبه السلم ladder . يتم تضمين منطق التحكم في مخطط السلم داخل الدرجات.
هناك اختلافان بين مخطط كهربائي ومخطط سلم. الاختلاف الأول هو أن منطق التحكم في المخطط الكهربائي يتم تمثيله باستخدام المكونات بينما يتم استخدام رموز فى مخطط السلم. والفرق الثاني هو تنفيذ منطق التحكم في مخطط كهربائي وفقًا لتشغيل الدائرة الكهربائية بينما يعتمد في مخطط السلم على الطبيعة المنهجية لمسح PLC.

لماذا يتم استخدام مخطط السلم لبرمجة PLC؟
السبب وراء استخدام مخططات سلم لبرمجة PLC هو أن مصممي نظام التحكم المبكر اعتادوا على دوائر التحكم المنطقية بالمرحلات ومخططات السلم تحاكيها بشكل وثيق ، ففضلوا استخدام مخططات السلم بدلاً من استخدام لغات البرمجة النصية مثل C و BASIC و Pascal و FORTRON. السبب الآخر لاستخدام مخططات السلم هو أن موظفي صيانة المصنع يفهمون بالفعل كيفية قراءة دوائر التحكم بالمرحلات ، لذا فإن استخدام مخططات السلم لبرمجة PLC يعني أنهم كانوا قادرين بسهولة على استكشاف مشكلات نظام التحكم وإصلاحها.
تساعدك مخططات السلم على صياغة التعبيرات المنطقية logic expressions في شكل رسومى مطلوب لبرمجة PLC. وهي تمثل تعبيرات شرطية conditional ومدخلات input ومخرجات output كرموز symbols. لذا فإن كتابة برنامج PLC باستخدام مخططات السلم يشبه رسم دائرة التحكم بالمرحلات .
مخطط السلم Ladder diagram (LD) هو الاسم الرسمي المعطى في المعيار الدولى IEC-61131 لبرمجة PLC . ولكن ، في هذه الأيام ، يتم استخدام المصطلحات : مخطط السلم ladder diagram ، مخطط منطق السلم ladder logic diagram ، رسم السلم ladder drawing ، تحكم السلم ladder control ، دائرة السلم ladder circuit ، مخطط منطق التحكم control logic diagram ومخطط المنطق logic diagram (على سبيل المثال لا الحصر) لوصف دوائر منطق المرحلات وبرمجة منطق السلم.
لذلك لا تنغمس كثيرًا في التعريف المحدد لكل تعبير من هذه التعبيرات ، فهي تعني عمومًا نفس الشيء. في نهاية المطاف ، سيعرف معظم الأشخاص ما تتحدث عنه على أي حال. أنا شخصياً أستخدم مصطلح منطق السلم ladder logic لبرمجة PLC ومنطق المرحلات relay logic لدوائر التحكم بالمرحلات .

كيفية رسم مخططات منطق السلم
الطريقة البسيطة لوصف مخطط السلم هي أنه لغة برمجة رسومية تستخدم سلسلة من القضبان rails والدرجات rungs التي تحتوي على رموز منطقية يتم دمجها لتشكيل تعبيرات صنع القرار. تبدو مخططات السلم في الواقع وكأنها سلم وهي أكثر شيوعًا باسم برمجة منطق السلم.

تمثل القضبان rails في مخطط السلم أسلاك التغذية supply لدائرة التحكم بمنطق المرحلات . هناك قضيب تغذية الجهد الموجب على الجانب الأيسر وقضيب جهد الصفر على الجانب الأيمن. في مخطط السلم ، يكون التدفق المنطقي من القضيب الأيسر إلى القضيب الأيمن .

تمثل الدرجات rungs في مخطط السلم الأسلاك التي تربط مكونات دائرة التحكم بالمرحلات . يتم استخدام رموز مخطط السلم لتمثيل مكونات الريلاى . يتم وضع الرموز في الدرجة لتشكيل شبكة من التعبيرات المنطقية.
عند تنفيذ برنامج منطق السلم في PLC ، هناك سبعة أجزاء أساسية لمخطط السلم والذي من المهم معرفتها. وهم القضبان rails ، الدرجات rungs ، المدخلات inputs ، المخرجات outputs ، التعبيرات المنطقية logic expressions ، تدوين العنوان / أسماء الوسم address notation/tag names والتعليقات comments . بعض هذه العناصر ضرورية والبعض الآخر اختياري.
للمساعدة في فهم كيفية رسم مخططات منطق السلم ، يتم تفصيل الأجزاء الأساسية السبعة من مخطط السلم أدناه ......

1.القضبان Rails - هناك نوعان من القضبان في مخطط السلم يتم رسمهما كخطوط عمودية (رأسية) تمتد في أقصى أطراف الصفحة. إذا كانوا في دائرة منطق المرحلات ، فإنهم سيمثلون الوصلات النشطة (الحية) والصفر فولت لمصدر الطاقة حيث ينتقل تدفق الطاقة من الجانب الأيسر إلى الجانب الأيمن.

2. الدرجات Rungs - يتم رسم الدرجات كخطوط أفقية لتوصيل القضبان بالتعبيرات المنطقية. إذا كانوا في دائرة منطق المرحلات ، فإنهم سيمثلون الأسلاك التي تربط مصدر الطاقة بمكونات الريلاى .

3. المدخلات Inputs - المدخلات هي إجراءات تحكم خارجية مثل الضغط على زر أو تشغيل مفتاح الحد limit switch . يتم توصيل المدخلات في الواقع إلى أطراف PLC ويتم تمثيلها في مخطط السلم برمز تلامس (اتصال) مفتوح فى الوضع العادى (NO) أو مغلق فى الوضع العادى (NC).

4. المخرجات Outputs - المخرجات هي أجهزة خارجية يتم تشغيلها وإيقاف تشغيلها مثل محرك كهربائي أو صمام الملف اللولبي (سلونويد) . يتم توصيل المخرجات أيضًا بأطراف PLC ويتم تمثيلها في مخطط السلم بواسطة رمز ملف ريلاى .

5. التعبيرات المنطقية Logic Expressions - يتم استخدام التعبيرات المنطقية مع المدخلات والمخرجات لصياغة عمليات التحكم المطلوبة.

6. تدوين العنوان وأسماء الوسم Address Notation & Tag Names - يصف تدوين العنوان المدخلات ، والمخرجات ، وذاكرة التعبير المنطقي لبنية PLC. أسماء الوسم هي الأوصاف المخصصة للعناوين.
7. التعليقات Comments - أخيرًا وليس آخرًا ، تعتبر التعليقات جزءًا مهمًا للغاية من مخطط السلم. يتم عرض التعليقات في بداية كل درجة ويتم استخدامها لوصف التعبيرات المنطقية وعمليات التحكم التي تقوم بتنفيذها الدرجة أو مجموعات الدرجات. أصبح فهم مخططات السلم أسهل كثيرًا باستخدام التعليقات.




كيف تقرأ منطق السلم How to Read Ladder Logic
تعمل المعالجات الدقيقة مثل تلك الموجودة في PLC وأجهزة الكمبيوتر الشخصية على المفهوم الثنائي binary .
ربما سمعت عن مصطلح "ثنائي" ‘binary’ . إنه يشير إلى مبدأ أنه يمكن التفكير في الأشياء في إحدى حالتين states . يمكن تعريف الحالات على النحو التالي:

كود:
كود:
1  or  0

True  or  False

On  or  Off

High  or  Low

Yes  or  No


المعالجات الدقيقة تحب (تتعامل فقط مع ) الثنائي… ..0101011101000111010001010100010100100101010010011.

أنا لا أعرف ماذا عنك ، لكن أنا رأسي يؤلمني بمجرد النظر إلى ذلك.

لحسن الحظ ، يستخدم منطق السلم تعبيرات رمزية symbolic ومحررًا بيانيًا (رسومى) graphical editor لكتابة الرسوم البيانية للسلالم وقراءتها ، مما يسهل على فهم البشر. إذا قمنا بترجمة حدث في العالم الحقيقي إلى منطق سلم ، فيمكننا التعبير عنه بشكل رمزي في شكل تلامس (NO) مفتوح فى الوضع العادى . قد يكون هذا الحدث شيئًا مثل الضغط على الزر أو تنشيط (عمل) مفتاح الحد.
دعنا نسميه الحدث ‘A’ . وهو يتبع المفهوم الثنائي ويكون لديه واحدة من حالتين ، TRUE أو FALSE.
يمكن أن يكون الحدث المرتبط بالتلامس المفتوح (NO) عادةً TRUE أو FALSE. عندما يكون هذا الحدث TRUE ، يتم تمييزه highlighted باللون الأخضر ويمكن أن يتدفق التدفق المنطقي بعده إلى التعبير المنطقي التالي. تمامًا مثل تدفق (مرور) التيار في الدائرة الكهربائية عند تشغيل المفتاح.
يظهر جدول حقيقة truth table منطق السلم للتلامس المفتوح (NO) عادةً والذى يشير إلى الحدث ‘A’ أدناه ...





مفهوم الثنائى Binary concept ومفهوم المنطق Logic concept
لا يمكن للتلامس المفتوح عادةً (NO) وحده أن يقرر الإجراء الذي يجب اتخاذه لأتمتة شيء ما ، بل يخبرنا فقط عن حالة الحدث.
نحن بحاجة إلى أفضل صديق "للثنائى" binary ألا وهو "المنطق" ‘logic’ للمساعدة.

المنطق Logic هو القدرة على تحديد الإجراء الذي يجب اتخاذه بناءً على حالة حدث أو أكثر.

نحن نستخدم المفاهيم الثنائية والمنطقية كل يوم في حياتنا. على سبيل المثال ، إذا IF شعرت بالبرد ، عندئذ THEN ارتدى سترتي ، ولكن إذا شعرت بارتفاع الحرارة ، فأخلع سترتي .

المفهوم الثنائي Binary - بارد أو ساخن Cold or Hot ، وإرتداء السترة أو خلعها Sweater On or Sweater Off.

المفهوم المنطقى Logic - إذا ، وعندئذ IF, THEN والوظائف المنطقية logic functions.
المفاهيم الثنائية والمنطقية هي ما يجعل منطق السلم يعمل . المفتاح الخفي لفتح فهمك لكيفية عمل منطق السلم هو أن الوظائف المنطقية IF, THEN يتم دمجها تلقائيًا في هيكل مخطط السلم.
دعني اريك……

وظائف منطق السلم Ladder Logic Functions
دعنا نأخذ حدثًا حقيقيًا ونخصصه لتلامس مفتوح فى الوضع العادى (NO) ونطلق عليه ‘A’ . في منطق السلم ، يتم تعريف أحداث العالم الحقيقي كمدخلات PLC.
الآن ، دعونا نطلق على نتيجة وظيفة المنطق ‘Y’ . في منطق السلم ، تُعرَّف نتيجة وظيفة منطق الدرجة rung بأنها مخرجات PLC.
عندما نأخذ هذين العنصرين الأساسيين وإدراجهما في درجة في مخطط السلم ، نحصل على السطر الأول من التعليمات البرمجية code !
وهي تعادل رسالة الترحيب "Hello World" في لغات البرمجة الأخرى .....





الآن ، دعنا نكشف عن الوظائف المخفية المضمنة من خلال تمييزها باللون الأزرق من أجل توضيح العلاقة بين بناء (هيكل) درجات السلم والوظائف IF, THEN ...



يمكننا كتابة التعبير المنطقي في أعلاه كدرجة كما يلى IF A THEN Y .

نظرًا لأن الدخل A يتبع المفهوم الثنائي ، فإن له حالتين ممكنتين ، TRUE أو FALSE.
لذلك ينتج عنه تكرارين منطقية محتملة:

كود:
IF A = FALSE THEN Y = FALSE
IF A = TRUE   THEN Y = TRUE

يمكننا أيضًا التعبير عن ذلك في جدول الحقيقة truth table ...



إذا قمنا بترجمة هذا إلى مخطط منطق سلم ، فإننا نعبر عنه بشكل رمزي في شكل تلامس (NO) مفتوح عادى للإدخال وملف ريلاى للإخراج. تذكر أن التدفق المنطقي من اليسار إلى اليمين ويتبع نفس مفهوم تدفق التيار في الدائرة الكهربائية.
يظهر جدول الحقيقة منطق سلم أدناه.



من أجل التعقب track السريع لفهم منطق السلم ، هناك ثلاث وظائف منطقية أساسية أخرى يجب معرفتها.
قد تتفاجأ ، ولكن عندما ندمج هذه الوظائف الثلاث مع IF, THEN ، سنتمكن بعد ذلك من برمجة معظم متطلبات التحكم في الأتمتة.
الوظائف الثلاثة هي:

كود:
1.	NOT
2.	AND
3.	OR

الوظيفة NOT - ومنطق السلم
نتيجة الوظيفة NOT هي الحالة المعاكسة لحدث ما.
لذلك إذا كان الدخل A للمتحكم PLC هو FALSE ، فستكون النتيجة TRUE. والعكس صحيح عندما يكون الدخل A هو TRUE ، ستكون النتيجة FALSE.
يشار إلى الوظيفة NOT أحيانًا بالمنطق العكسي. تحقق من جدول الحقيقة أدناه ....



إذا قمنا بترجمة الوظيفة NOT إلى مخطط منطق سلم ، فإننا نعبر عنها بشكل رمزي في شكل تلامس مغلق عادة (NC).
يظهر جدول الحقيقة منطق السلم أدناه.



الوظيفة AND - ومنطق السلم
تقوم الوظيفة AND بفحص مدخلات PLC المتعددة ويكون لها مخرج واحد ناتج.
إذا قمنا بترجمة الوظيفة AND إلى مخطط سلم ، يمكننا التعبير عنها بشكل رمزي في شكل تلامسين (NO) مفتوحتين عادةً (المدخلات A و B) وملف ريلاى (الخرج Y).
كلها متصلة في خط ، تمامًا مثل اتصال متسلسل (توالى ) في دائرة كهربائية.




هذه المرة قمنا أيضًا بتسليط الضوء على الوظيفة AND المخفية لتوضيح العلاقة بين وظائف منطق السلم وهيكل درجات السلم.
يمكننا كتابة التعبير المنطقي أعلاه كما يلى IF A AND B THEN Y .
تفحص الوظيفة AND إذا كانت جميع مدخلات PLC هي TRUE ، فإن النتيجة المقابلة هي TRUE أيضًا. ومع ذلك ، إذا كان أي من مدخلات PLC هو FALSE ، فإن النتيجة المقابلة هي FALSE أيضًا.
نظرًا لأن المدخلات A و B تتبع المفهوم الثنائي وهي جزء من وظيفة AND ، فهناك أربعة تكرارات منطقية محتملة.
تحقق من جدول الحقيقة أدناه ....



يزداد عدد التكرارات المنطقية مع عدد مداخل PLC . ولكن هذا لا يهم كثيرًا مع الوظيفة AND لأن النتيجة يمكن أن تكون TRUE فقط إذا كانت جميع مداخل PLC هي TRUE.
إذا ترجمنا الوظيفة AND إلى جدول حقيقة منطق السلم ، نحصل على الجدول أدناه ...



الوظيفة OR – ومنطق السلم
تقوم الوظيفة OR بفحص مدخلات PLC المتعددة ولها مخرج واحد ناتج.
إذا قمنا بترجمة الوظيفة OR إلى مخطط سلم ، يمكننا التعبير عنها بشكل رمزي في شكل تلامسين (NO) مفتوحتين عادةً (المدخلات A و B) وملف ريلاى (الخرج Y).
يتم وضع المدخلات في الدرجة في ما يعرف باسم الفرع branch . هذا هو ما يعادل اتصال متوازي في دائرة كهربائية.
ثم يتم توصيل الإخراج فى الخط مع الدرجة ...




هذه المرة قمنا أيضًا بتمييز وظيفة OR المخفية عندما نقوم بإنشاء فرع (اتصال متوازي) مع إدخال PLC B عبر إدخال PLC A.
يمكننا كتابة التعبير المنطقي أعلاه كما يلى IF A OR B THEN Y.
تفحص الوظيفة OR إذا كان أي من مدخلات PLC هي TRUE ، فإن النتيجة المقابلة هي TRUE أيضًا. ومع ذلك ، يجب أن تكون جميع مدخلات PLC هى FALSE حتى تكون النتيجة المقابلة هي FALSE أيضًا.
لأن المدخلات A و B تتبع المفهوم الثنائي وهي جزء من الوظيفة OR هناك أربعة تكرارات منطقية محتملة.
تحقق من جدول الحقيقة أدناه ....



تذكر ، يزداد عدد التكرارات المنطقية مع عدد إدخالات PLC . ولكن هذا لا يهم كثيرًا مع الوظيفة OR لأن النتيجة يمكن أن تكون TRUE إذا كان أي من مدخلات PLC هي TRUE.
إذا ترجمنا الوظيفة OR إلى جدول حقيقة منطق سلم ، نحصل على الجدول أدناه ...




حسنا ! لديك الآن معرفة بأساسيات منطق السلم.
في القسم التالي ، سنقفز مباشرة إلى الرموز الأكثر شيوعًا التي لا يمكنك الاستغناء عنها عند برمجة منطق السلم. سنفحص أيضًا عملياتها ونلخص بعض الاستخدامات الأكثر شيوعًا لها.
رد مع اقتباس
  #3  
قديم 07-02-2020, 11:05 PM
الصورة الرمزية F.Abdelaziz
F.Abdelaziz F.Abdelaziz غير متواجد حالياً
استاذ الكترونيان
 
تاريخ التسجيل: May 2009
المشاركات: 2,819
معدل تقييم المستوى: 23
F.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to behold
افتراضي رموز منطق السلم Ladder Logic Symbols

الدرس الثالث :

رموز منطق السلم Ladder Logic Symbols




تم اشتقاق رموز منطق السلم المستخدمة في برمجة منطق السلم من دوائر التحكم المنطقية التقليدية. إذا كان لديك معرفة أساسية بالدوائر الكهربائية ، فإن البدء في برمجة منطق السلم يجب أن يكون سهلا .
إذا لم يكن الأمر كذلك ، فلا تقلق ، فإن منطق السلم هو لغة برمجة رسومية ويسهل التعرف على رموز ومفاهيم منطق السلم الأساسية.
سيمنحك تعلم رموز منطق السلم الأساسية أساسًا متينًا.
بشكل عام ، يمكن إنجاز الغالبية العظمى من تطبيقات العالم الحقيقي باستخدام رموز منطق السلم الأساسية الموضحة أدناه.
كلما زادت رغبتك في برمجة وظائف الأتمتة والتحكم في العمليات المعقدة ، يمكن استخدام رموز منطق سلم أعلى مستوى.
وتشمل هذه ، على سبيل المثال لا الحصر ، العمليات الحسابية وحلقات PID ومعالجة البيانات وتحويل البيانات.

1- التلامس المفتوح فى الوضع العادى Normally Open Contact



• العمل Operation :
إذا كانت الحالة TRUE عندئذ يكون التلامس مغلق CLOSED أى

If the condition is TRUE then the contact is CLOSED.




• الاستخدامات الشائعة Common Uses :
- أزرار ضغط "البدء" Start Push buttons .
- مفاتيح الاختيار (الانتخاب) Selector switches .
- الأجهزة الرقمية Digital instrumentation .
- البرمجة الداخلية Internal programming .

2- التلامس المغلق فى الوضه العادى Normally Closed Contact



• العمل Operation :
إذا كانت الحالة TRUE عندئذ يكون التلامس مفتوح OPEN أى

If the condition is TRUE then the contact is OPEN.




• الاستخدامات الشائعة Common uses :
- إزرار ضغط "الإيقاف" Stop Push buttons .
- أجهزة فشل الأمان Fail safe instrumentation .
- زيادة الحمل (أوفر لود) الحرارى للمحرك Motor Thermal Overloads .
- البرمجة الداخلية Internal programming .

3- الخرج Output



• العمل Operation :
إذا كانت حالة الدخل TRUE عندئذ يكون الخرج فى حالة توصيل ON أى

If the input condition is TRUE then the output is ON.




• الاستخدامات الشائعة Common uses :
- كونتاكتورات المحرك Motor Contactors .
- المنفذات Actuators .
- لمبات البيان Indication lamps .
- سراين الإنذار Warning sirens .
- البرمجة الداخلية Internal programming .

4- طلقة واحدة – كشف الحافة الموجبة One Shot – Positive Edge Detection



• العمل Operation :
إذا كان حالة الدخل الانتقال transitions من FALSE إلى TRUE ، فعندئذ يكون الخرج في وضع التشغيل ON ، للوقت المستغرق لإجراء مسح برنامج PLC واحد.



• الاستخدامات الشائعة Common uses :
- تطبيقات العد Counting applications .
- أوامر الرياضيات Math commands .
- أوامر نقل البيانات Data Transfer commands .
- خرج الماسك (المزلاج) خلال مجموعة معينة من الشروط Latch output during a specific set of conditions .

5- مؤقت تأخير التوصيل Timer Delay On



• العمل Operation :
إذا كانت حالة الدخل TRUE ، فسيبدأ المؤقت.
عند الوصول إلى الوقت المحدد مسبقًا pre-set ، يتم تشغيل ON الإخراج.
إذا أصبحت حالة الدخل FALSE ، في أي مرحلة ، يتوقف الموقت ويغلق OFF الخرج أيضًا.



• الاستخدامات الشائعة Common uses :
- التأخير الزمنى للسراين Time delay for Sirens .
- بوادى المحرك ستار / دلتا Star/Delta Motor Starters .
- مؤخرات بدء التتابع Sequence start delays .
- زمن تأخير منع الارتداد De-bounce لعلاج إرتعاش flicker الأجهزة .

6- مؤقت تأخير الفصل Timer Delay Off



• العمل Operation :
إذا كانت حالة الدخل TRUE ، يتم تشغيل ON الخرج .
ثم إذا أصبحت حالة الدخل FALSE ، يبدأ المؤقت.
عند الوصول إلى الوقت المحدد مسبقًا ، يتم إيقاف تشغيل الخرج .
إذا أصبحت حالة الدخل TRUE ، في أي مرحلة ، يتوقف الموقت ويتم تشغيل الخرج أيضًا.



• الاستخدامات الشائعة Common Uses :
- زمن تأخير التشغيل Run on time Delay .


7- المقارنة Comparison
• أكبر من أو يساوى Greater Than or Equal To



• أقل من أو يساوى Less Than or Equal To



• يساوى Equal To



العمل Operation :
إذا كانت المقارنة بين دخلين TRUE عندئذ يكون الخرج ON .

الاستخدامات الشائعة Common uses :
- اكتمال تكديس المنتج وإلغاء تكديسه Product Stacking and Un-Stacking complete .
- تحقيق نقطة ضبط نظام الخلط Batching system weight set point achieved .
- تنشيط التنبيه (الإنذار) والأعطال (درجة الحرارة ، التدفق ، تيار المحرك ، إلخ) Alarm & Fault activation

8- التعليمات الرياضية (الحسابية) Math Instructions :
• الجمع Addition



• الطرح Subtraction



• الضرب Multiplication



• القسمة Division



العمل Operation :
تنفيذ العملية الرياضية وإخراج النتيجة .

الاستخدامات الشائعة Common uses :
- تحجيم Scaling المدخلات والمخرجات التناظرية ( درجة الحرارة ، التدفق ، تيار المحرك والوزن وخلافه ) .
- حساب Calculating سرعة المحرك Motor Speed والوضع Position .

في القسم التالي ، سنتقدم سريعًا نحو تعلمك لبرمجة منطق السلم من خلال فهم مبادئ التشغيل الأساسية لدوائر التحكم بالريلاى وأيضًا اكتشاف الفرق بين منطق المرحلات ومنطق السلم.
رد مع اقتباس
  #4  
قديم 07-09-2020, 03:09 PM
الصورة الرمزية F.Abdelaziz
F.Abdelaziz F.Abdelaziz غير متواجد حالياً
استاذ الكترونيان
 
تاريخ التسجيل: May 2009
المشاركات: 2,819
معدل تقييم المستوى: 23
F.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to beholdF.Abdelaziz is a splendid one to behold
افتراضي منطق الريلاى مقابل منطق السلم Relay Logic Vs Ladde

الدرس الرابع :
منطق الريلاى مقابل منطق السلم Relay Logic Vs Ladder Logic


"منطق الريلاى" Relay logic هو نظام تحكم عن طريق توصيل الأسلاك (سلكي ثابت ) hard wired يستخدم الأجهزة instrumentation والمفاتيح switches والمؤقتات timers والمرحلات relays والكونتاكتورات contactors والمحركات motors والمنفذات (المشغلات) actuators . تم تحقيق أتمتة الآلة والعمليات التقليدية باستخدام منطق الريلاى relay logic . تتطلب أتمتة الماكينة باستخدام منطق الريلاى كمية ضخمة mass من الأسلاك وكذلك ضخامة الأجهزة حتى لأداء أبسط المهام.




بعض المشاكل الأخرى المتعلقة بتنفيذ منطق الريلاى :
• يتطلب الكثير من مساحة لوحة التوزيع switchboard .
• التركيب Installation كثيف العمالة.
• اكتشاف (تحديد) الأعطال Trouble shooting صعب للغاية.
• التعديلات Modifications على وظيفة التحكم معقدة ومملة للغاية.

ظهور المعالج الدقيق يعني أنه يمكن برمجة وظيفة التحكم بمنطق الريلاى وتخزينها في جهاز كمبيوتر. في أواخر الستينيات من القرن الماضي ، أدرك بعض الأشخاص شديدى الذكاء حقًا هذا الأمر وتطلعوا إلى الأمام لإنشاء جهاز يسمى المتحكم المنطقى القابل للبرمجة (PLC).
منطق الريلاى في PLC هو طريقة صياغة التعبيرات المنطقية من أجل أتمتة الآلات والعمليات في التطبيقات الصناعية. لغة البرمجة المستخدمة لإنشاء منطق الريلاى في PLC تسمى "منطق السلم" Ladder Logic.
كان هذا طفرة هائلة في صناعة الأتمتة الصناعية التي من شأنها أن تجعل أنظمة التحكم بمنطق الريلاى تقريبا زائدة عن الحاجة.

في نظام التحكم الآلي المزايا الرئيسية لنظام PLC عن المرحلات :
• أسهل لتطوير التعابير المنطقية المعقدة باستخدام برمجيات منطق السلم ladder logic software .
• زيادة الموثوقية مع حياة PLC تصل بسهولة إلى ما يزيد عن 10 سنوات .
• أسهل وأرخص لتعديل أو توسيع نظام التحكم في تاريخ لاحق .
• تخفيض تكاليف التصميم والتركيب والمكونات.
• صيانة مجانية تقريبًا مقارنة بالمرحلات .
• وظائف مراقبة وإعداد تقارير متفوقة مما يجعل عملية اكتشاف الأعطال والتحسين أسهل.



لفهم الفرق بين منطق الريلاى ومنطق السلم ، من المهم حقًا أن تفهم منطق الريلاى وكيفية عمل الريلاى . يعد فهم منطق الريلاى نقطة انطلاق جيدة لفهم منطق السلم. بعد كل شيء ، تم اشتقاق منطق السلم في الأصل من منطق الريلاى. منطقي ، أليس كذلك؟

كيف تعمل أنظمة منطق الريلاى (المرحل) ؟ How Do Relay Logic Systems Work?
أنظمة منطق الريلاى هي شبكة network من المكونات الكهربائية المتصلة سلكيا hard wired . الريلاى relay هو المكون الأساسي ويعمل عن طريق تشغيل وإيقاف تشغيل الدوائر الكهربائية لتشكيل العمليات المنطقية التي بدورها توفر التحكم في العملية للنظام . يمكنك التفكير في أنظمة منطق الريلاى على أنها جهاز كمبيوتر ميكانيكي يقوم بإجراء العمليات الحسابية مع 1 و 0 من خلال تبديل switching المرحلات بدلاً من استخدام شريحة السيليكون.
المكون الأساسي لمنطق الريلاى هو الريلاى (المرحل) . لذلك دعونا نلقي نظرة على كيفية عمل المرحلات بمزيد من التفاصيل ...

ما هو الريلاى (المرحل) ؟ What Is A Relay?
الريلاى (المرحل) relay هو جهاز كهروميكانيكي يتكون من مكونين أساسيين ، ملف coil الريلاى وتلامس contact الريلاى. يتم استخدام تلامس الريلاى لتشغيل دائرة on أو إيقاف تشغيلها off ويتم استخدام ملف الريلاى لتغيير حالة تلامس الريلاى . الأنواع الرئيسية الثلاثة للمرحلات هي مرحلات ترجع (تعود) بزنبرك spring return relays ، ومرحلات الإغلاق (المزلاج) latching relays ، ومرحلات متعددة الأقطاب multipole relays .

لماذا يتم استخدام المرحلات في دوائر التحكم؟ Why Are Relays Used In Control Circuits?
يتم استخدام المرحلات لأنها تسمح بالعزل الكهربائي بين دائرة التبديل switching (التلامس contact) ودائرة إشارة التحكم (الملف coil) عبر وسائل كهرومغناطيسية. وهذا يعني أنه يمكن استخدام المرحلات لربط الدوائر بجهد مختلف ومستويات تيار للتحكم في المعدات مثل المحركات والمشغلات actuators . يمكن للمرحل أيضًا تبديل دائرات متعددة بحالات مختلفة في نفس الوقت مما يجعلها مثالية لدوائر التحكم المنطقي في الأتمتة الصناعية industrial automation .

ما هي الوظائف التي يؤديها الريلاى (المرحل) ؟ What Functions Does A Relay Perform?
تؤدي المرحلات 3 وظائف رئيسية في الدائرة الكهربائية:
• السماح لدوائر التحكم بتبديل (تشغيل وإيقاف) switch دائرة حمل حتى إذا كانت الجهود (الفولتيات) voltages لكلتا الدائرتين مختلفة.
• قادرة على تبديل جهاز تيار مرتفع باستخدام إشارة تحكم إلكترونية منخفضة التيار .
• يمكن توصيل المرحلات معًا لإجراء العمليات المنطقية باستخدام شبكة من الدوائر الكهربائية المعروفة باسم "منطق الريلاى" relay logic .

كيف يعمل الريلاى How a Relay Works
الريلاى هو جهاز كهروميكانيكي يتكون من مكونين أساسيين ...
• ملف الريلاى Relay coil.
• تلامس الريلاى Relay Contact.

ملف الريلاى هو في الأساس أسلاك نحاسية ملفوفة حول قطعة من الحديد تستخدم لإنتاج مجال كهرومغناطيسي يمكن أن يجذب المعادن . فكر في رافعة ساحة الخردة التي تستخدم لالتقاط الخردة المعدنية. يستخدم نفس المبدأ لتوليد مجال مغناطيسي يجذب المعادن.

تلامس الريلاى هو في الأساس مفتاح switch يستخدم لتشغيل الدائرة الكهربائية أو إيقاف تشغيلها.

إنتظر دقيقة! إذا كان تلامس الريلاى يشغل أو يوقف الدائرة الكهربائية ، فلماذا نحتاج إلى الملف؟
حسنًا ، الغرض من ملف الريلاى هو تغيير حالة تلامس الريلاى . تمامًا كما يُستخدم إصبعك لتغيير حالة مفتاح الضوء من إيقاف التشغيل إلى تشغيل. لذا ، نقوم بتغيير حالة تلامس الريلاى باستخدام إشارة كهربائية بدلاً من استخدام إصبعك.





لتنشيط (تفعيل) energize الملف ، نحتاج إلى توصيله بمصدر جهد ، والذي يطلق عليه أحيانًا دخل الريلاى .
بعض مرحلات الجهد المستمر DC الشائعة هي مرحل 5V ومرحل 12V ومرحل 24V . بعض مرحلات جهد التيار المتردد AC الشائعة هي مرحل 120VAC ومرحل 240VAC .
عادة ما يتم كتابة مقنن الجهد voltage rating على غلاف المرحل. يجب الالتزام بمقنن جهد الملف وإلا ، فقد يفشل ملف المرحل في تغيير حالة التلامسات أو يسخن ويحترق.
عندما نقوم بتفعيل energize ملف المرحل بالجهد المقنن ، فإنه يسمح للتيار بالتدفق داخل ملف المرحل وينتج مجال كهرومغناطيسي . يستخدم هذا المجال الكهرومغناطيسي لجذب تلامس المرحل نحو ملف المرحل ، وبالتالي تغيير حالة تلامس المرحل .
يتم تكوين تلامس المرحل بشكل مفتوح فى الوضع العادى (الطبيعى) normally open (NO) أو مغلق فى الوضع العادى normally closed (NC) . في كثير من الأحيان يكون للمرحل تلامسات تحويل (تغيير) changeover contacts.
إذن ما هي تلامسات التحويل ؟
تلامسات التحويل (التغيير) changeover contact هي مزيج من التلامسات المفتوحة عادة (NO) والمغلقة عادة (NC) في نفس كتلة التلامسات . تسمح تلامسات التغيير باختيار التلامسات المفتوحة عادة (NO) أو التلامسات المغلقة عادة (NC) اعتمادًا على طريقة توصيلها. يطلق عليه أحيانًا تلامس مزدوج double throw .
عادة ما يتم كتابة مقنن جهد االتلامس ومقنن التيار على غلاف المرحل. يجب الالتزام بجهد التلامس ومقنن التيار وإلا فقد يسخن اتصال المرحل ويحترق.
إذا لم تتم كتابة مقنن جهد ملف المرحل وجهد التلامس ومقنن التيار على غلاف المرحل ، تحقق من قاعدة المرحل . في بعض الأحيان يكون مزيجًا من كل من الغلاف والقاعدة. إذا فشل كل شيء آخر ، راجع الداتا شيت data sheet .




عمل الريلاى Relay Operation
إذا تم توصيل ريلاى بتلامس مفتوح فى الوضع العادى (NO) وتم تنشيط energized الريلاى ، فستتغير حالة التلامسات من الحالة المفتوحة OPEN إلى الحالة المغلقة CLOSED .....



إذا تم توصيل ريلاى بتلامس مغلق فى الوضع العادى (NC) وتم تنشيط energized الريلاى ، فستتغير حالة التلامسات من الحالة المغلقة CLOSED إلى الحالة المفتوحة OPEN .....



إذا تم توصيل ريلاى بتلامسات تحويل changeover بتكوين (NO) مفتوح بشكل طبيعي وتم تنشيط الريلاى ، فستتغير التلامسات من الحالة OPEN إلى CLOSED .....



إذا تم توصيل ريلاى بتلامسات تحويل بتكوين (NC) مغلق بشكل طبيعي وتم تنشيط الريلاى ، فستتغير التلامسات من الحالة مغلق CLOSED إلى مفتوح OPEN . لاحظ أن أسلاك الاتصالات قد غيرت جوانبها .....




أنواع المرحلات Types of Relays
هناك عدة أنواع من المرحلات لكل منها خصائصها واستخداماتها الخاصة. الأنواع الثلاثة التي يتم استخدامها بشكل متكرر في التطبيقات الصناعية هي مرحلات تعود بزنبرك spring return ، ومرحلات الإغلاق (المسك أو المزلاج) latching ومرحلات متعددة الأقطاب multipole .

مرحلات تعود بزنبرك Spring Return Relay
أكثر المرحلات شيوعًا هي مرحلات تعود بزنبرك. ولها ملف مرحل واحد وتستخدم زنبرك لإعادة التلامس إلى حالته الطبيعية بعد إلغاء تنشيط ملف de-energized المرحل وانهيار (تلاشى) المجال الكهرومغناطيسي.
يجب تنشيط ملف المرحل في جميع الأوقات حتى تظل حالة التلامس في حالتها المتغيرة. بمجرد إلغاء تنشيط الملف ، يعود التلامس إلى حالته الطبيعية.
يمكنك رؤية الزنبرك في صورة "المرحل الكهروميكانيكي" أعلاه ، الزنبرك في قمة المرحل.

مرحل الإغلاق (المسك – المزلاج) Latching Relay
مرحل الإغلاق هو نوع من المرحل الذي يمكنه تغيير حالة التلامس والحفاظ عليها دون الحاجة إلى تنشيط الملف باستمرار. فهو يستخدم ملفين منفصلين ، كل منهما مسؤول عن حالة معينة من االتلامس إما مفتوحة أو مغلقة. نبضة جهد قصيرة لتنشيط أي ملف في مرحل الإغلاق هى كل ما هو مطلوب لتغيير حالة التلامس .

مرحل متعدد الأقطاب Multi Pole Relay
المرحل متعدد الأقطاب هو أي نوع من المرحل مع أكثر من تلامس (اتصال). يسمى كل تلامس مرحل "قطب" pole . لذلك سيطلق على المرحل الذي يحتوي على تلامسين مرحل ثنائي القطب ويسمى المرحل ذو أربع تلامسات مرحل رباعي القطب.
عند استخدام مرحلات متعددة الأقطاب ، لا تلزم ملفات متعددة لتغيير حالة جهات الاتصال. يتم تغيير حالة جميع تلامسات المرحل في نفس الوقت بواسطة ملف مرحل واحد.





باختصار ، إن تشغيل مرحل قطب واحد هو نفسه مثل مرحل متعدد الأقطاب ، لدينا فقط المزيد من الاتصالات للعب معها!
هذا مفيد عندما نقوم بتنشيط أكثر من جهاز واحد. خاصة عندما تحتاج الأجهزة إلى مستويات جهد مختلفة أو يتجاوز سحب التيار المجمع لأجهزة متعددة مقنن التيار لتلامس واحدة. من المفيد أيضًا وجود مرحلات متعددة الأقطاب عندما يصبح منطق التحكم في العملية معقدًا.

كيف توصل المرحل؟ How do you connect a Relay?
من أجل توصيل المرحل ، نحتاج إلى توصيل الملف إلى مصدر جهد (يتم تبديله switched بشكل عام) والتلامسات بجهاز التحميل مثل المصباح أو المحرك أو الصمام اللولبي (سلونويد) أو مرحل آخر. يمكن القيام بذلك عن طريق توصيل ملف المرحل وأسلاك التلامس بأطراف قاعدة المرحل . عادةً ما يتم تعيين أطراف قاعدة المرحل على غلاف المرحل ، وكذلك المسميات على قاعدة المرحل ، وللتفاصيل يتم الرجوع إلى الداتا شيت الخاصة بالمرحل .



المشترك common في المرحل هو الطرف المصاحب للجزء من التلامس الذي لا يتغير عندما يتم تنشيط ملف المرحل . في المرحل بتلامس تحويل changeover ، يكون هو الطرف "مشترك" “common” لكل من التلامس NO والتلامس NC. عندما يتم توصيل المشترك بشكل صحيح ، فإنه يتصل بجهد إمداد الحمل.



دوائر منطق الريلاى (المرحل) Relay Logic Circuits :
العناصر الأساسية لدوائر منطق الريلاى هي….
• مصدر القدرة Power supply .
• مكونات الريلاى Relay components .
• أسلاك التوصيل Connection wires .
يحتاج مصدر القدرة إلى المطابقة مع مقنن جهد ملف المرحل . أيضًا ، يجب أن يكون القدرة كبيرة بما يكفي لاستيعاب سحب التيار لجميع المرحلات عند تنشيطها.
يتم اختيار المرحلات وفقًا لجهد خرج مصدر القدرة والوظيفة ومقنن التيار للتلامسات المطلوبة.
نظرًا لأن منطق المرحل هو نظام سلكي ثابت (صلب) hard wired ، يلزم نوع من مخطط الأسلاك wiring diagram أو مخطط المرحل لفهم كل شيء.
الآن يرجى ملاحظة أن هناك العديد من الطرق لرسم دائرة كهربائية. اعتمادًا على البلد الذي تنتمي إليه ، ستحدد مخطط أسلاك المرحل القياسي الذي ستحتاج إلى استخدامه. طريقة تخطيط الدوائر و رموز المكونات ستختلف من معيار رسم إلى آخر. أيضا ، بعض معايير الرسم ترتب دوائر التحكم الخاصة بها من اليسار إلى اليمين وبعضها يستخدم من الأعلى إلى الأسفل. تحقق من عينة الرسومات أدناه ...



لأغراض هذا الشرح ، سيتم استخدام ترتيب من اليسار إلى اليمين لأنه يرتبط بمخططات منطق السلم لاحقًا.
يتكون الرسم التخطيطي للمرحل من قضيب rail جهد التغذية على الجانب الأيسر و قضيب جهد الصفر على الجانب الأيمن مرسومة كخطوط عمودية.
يتم وضع (تعبئة) مكونات المرحل والأجهزة الأخرى بينها بأسلاك التوصيل ، المرسومة كخطوط أفقية ، لتشكيل دائرة.

رموز منطق الريلاى Relay Logic Symbols
يمكن رسم ملف الريلاى وتلامسات الريلاى وفقًا لمخطط رموز منطق الريلاى أدناه ...



كيفية قراءة مخطط الريلاى How to Read a Relay Schematic
تستخدم أبسط دوائر منطق الريلاى مصدر طاقة و ريلاى ومفتاح وجهاز يحتاج إلى تشغيل أو إيقاف تشغيل جميعها موصلة معًا كما هو موضح في مخطط الريلاى البسيط أدناه ...



يوضح مثال دائرة منطق الريلاى أعلاه مصباحًا (مصباح رقم 1 Lamp No.1 ) قيد التشغيل عبر مرحل (مرحل رقم 1 Relay No.1 ).

يحتوي الخط الأول على مفتاح دوار rotary switch متصل بملف المرحل رقم 1 المسمى R1.

يحتوي الخط الثاني على تلامس مفتوح بشكل طبيعي من Relay No.1 المسمى أيضًا R1 المتصل بالمصباح رقم 1.

للمساعدة في فهم مخططات الريلاى ، تتم قراءة تسلسل الأحداث من الخط الأفقي الأول لأسفل ومن قضيب الطاقة بالجانب الأيسر إلى قضيب الطاقة بالجانب الأيمن.

نقرأ من اليسار إلى اليمين لأن فرق الجهد بين قضبان القدرة اليسرى واليمنى يخلق مرور التيار في هذا الاتجاه. في مثال مخططات الريلاى ، يتم استخدام خط أخضر لإبراز مرور التيار في الدائرة.
لذا ، في السطر الأول ، نبدأ عند قضيب الطاقة بالجهة اليسرى ونتبع الخط الأفقي حتى نصل إلى المفتاح الدوار المفتوح عادة.

إذا كان المفتاح الدوار في حالة OPEN ، فهناك دائرة مفتوحة ولا يمكن أن يمر التيار إلى الجانب الأيمن من الدائرة. لذا يبقى ملف الريلاى (R1) غير مفعل.

إذا ذهبنا إلى السطر الثاني ، نلاحظ أن تلامس الريلاى المفتوح عادةً (R1) يبقى مفتوحًا OPEN لأن ملف الريلاى
Relay No.1 coil (R1) غير مفعل. لذلك هناك أيضًا دائرة مفتوحة على الخط الثاني بحيث لا يمكن أن يمر تيار إلى المصباح ويبقى متوقفًا OFF …




ماذا يحدث عند تشغيل on المفتاح الدوار Rotary Switch ؟
عند تشغيل ON المفتاح الدوار ، تتغير حالته من OPEN إلى CLOSED.

إذا نظرنا إلى الخط الأول وبدأنا من عند قضيب القدرة بالجهة اليسرى ، وتتبعنا الخط الأفقي حتى نصل إلى المفتاح الدوار يمكننا ملاحظة أنه في حالة CLOSED ويمكن أن يمر التيار إلى الجانب الأيمن من الدائرة .

لذلك في هذه الحالة يتم تنشيط ملف الريلاى (R1) ثم نصل إلى نهاية قضيب الجهة اليمنى.

الآن دعنا نذهب إلى الجانب الأيسر من الخط الثاني حيث نلاحظ أن تلامس الريلاى المفتوح عادة (R1) قد تغير أيضًا إلى حالة CLOSED لأن ملف الريلاى مفعل energized .

لذلك هناك دائرة مغلقة على الخط الثاني بحيث يمكن أن يتدفق التيار إلى الجانب الأيمن من الدائرة ويتم تشغيل ON المصباح رقم 1 ...



دعونا نضيف خط آخر إلى دائرة منطق الريلاى .
هذه المرة سوف نستخدم تلامس ريلاى ثانى من Relay No1 ونوصله كتلامس مغلق عادةً. ثم سنضيف مصباحًا ثانيًا (مصباح رقم 2 Lamp No2 ) إلى الدائرة الجديدة.
في هذه الحالة سيتم عكس تشغيل هذا المصباح. لذلك عندما يكون المفتاح الدوار مطفأ OFF ، فإن المصباح رقم 2 يكون قيد التشغيل وعندما يكون المفتاح الدوار قيد التشغيل ON ، يكون المصباح رقم 2 مطفأ OFF .
تحقق من دائرة منطق الريلاى أدناه ...



تلامس الريلاى الجديد في السطر الثالث هي الآن مغلقة بشكل طبيعي بدلاً من مفتوحة عادى .
عندما يتم إلغاء تنشيط ملف Relay No.1 ، يكون تلامسه المغلق عادةً في حالته الطبيعية ، وهو مغلق CLOSED .
عندما يتم تنشيط ملف Relay No.1 ، فإنه يتم تغيير حالة التلامس المغلق إلى OPEN.
يعمل التلامس المغلق عادةً على عكس التلامس المفتوح عادةً. يُشار إليه أحيانًا باسم منطق الريلاى العكسي أو المنطق العكسي فقط . انظر أدناه….



تحكم منطق السلم Ladder Logic Control

تذكر العبارة السابقة في هذا الدرس - منطق السلم Ladder Logic مشتق في الأصل من منطق الريلاى Relay Logic .
إذن ، ما الفرق بين منطق الريلاى ومنطق السلم؟
الفرق الكبير بين منطق الريلاى ومنطق السلم هو أن منطق الريلاى يحتاج إلى سلك صلب لكل دائرة تحكم ولكل وظيفة تحكم واحدة. في حين يستخدم منطق السلم المساعدة من جهاز قائم على معالج دقيق يسمى متحكم منطقى قابل للبرمجة (PLC).

فكيف يختلف PLC عن منطق الريلاى ؟
الفرق بين PLC ومنطق الريلاى هو أن PLC جهاز قابل للبرمجة بينما منطق الريلاى هو شبكة من الأجهزة الكهربائية المتصلة سلكيا hardwired . يمكن لكل من PLC ومنطق الريلاى إجراء حساب منطقي ، ولكن PLC يقوم بذلك باستخدام معالج دقيق ويقوم منطق الريلاى بذلك باستخدام الدوائر الكهربائية.
لذا ما نقوم به بشكل أساسي هو الحصول على كتلة ضخمة من المرحلات والأسلاك واستبدالها بصندوق صغير يتمتع بقوة حوسبة رائعة.
حتى مع PLC وبرمجة السلم المنطقية ، ما زلنا بحاجة إلى توصيل بعض الأجهزة المتصلة سلكيا مثل المفاتيح والمصابيح تمامًا كما هو الحال في أمثلة منطق الريلاى أعلاه. ولكن يتم تقليل الأسلاك بشكل كبير لأن أجهزة الإدخال والإخراج فقط تحتاج إلى أسلاك . يتم استبدال مرحلات التحكم التي يتم استخدامها لتشكيل وظيفة التحكم ووظائف المنطق ببرنامج منطق السلم المخزن داخليًا داخل ذاكرة PLC.




يشبه شكل مخطط منطق السلم مخطط دائرة منطق الريلاى .
هناك قصيب قدرة power rail على الجانب الأيسر وقضيب قدرة على الجانب الأيمن مرسومة كخطوط عمودية.
يتم إدراج البرمجة المنطقية بين قضبان القدرة ويتم توصيلها بخطوط أفقية لتكوين تعبير منطقي logic expression .
يُسمى كل سطر في مخطط منطق السلم درجة rung .
توقف…. القضبان والدرجات ... ولهذا السبب يستخدم مصطلح "سلم" “Ladder” في منطق السلم ...
ومع ذلك ، فإن الرموز المستخدمة تختلف قليلاً عن رسومات دوائر منطق الريلاى . تحقق من الجدول أدناه لمقارنة الاختلافات بين المكونات الأساسية ...



إذا كان علينا استخدام ريلاى مزلاج latching relay يستخدم ملفين ، أحدهما لمزلاج (أو ضبط) latch (or set) الريلاى والآخر لفك مزلاج (أو إعادة تعيين) un-latch (or reset) الريلاى . يتم تمثيل رموز الريلاى على النحو التالي ...



لتوضيح الاختلاف ، دعنا نستخدم المثال أعلاه حيث يقوم المفتاح بتشغيل مصباحين في وضع التشغيل ON وإيقاف التشغيل OFF بدلاً من ذلك.
إذا كنا نستخدم PLC مع برنامج منطق سلم ، نحتاج أولاً إلى توصيل الأسلاك إلى أطراف لإدخال في PLC. ثم نحتاج إلى توصيل أسلاك المصابيح إلى أطراف الإخراج . أخيرًا ، نحتاج إلى كتابة برنامج منطق السلم الخاص بنا وتحميله في ذاكرة PLC.
يوضح الرسم أدناه مخططً منطق السلم عندما يكون المفتاح الدوار مغلقًا OFF...



يوضح الرسم أدناه مخططً منطق السلم عند تشغيل on المفتاح الدوار.
تذكر أن التلامس المغلق عادة هو منطق عكسي!



مزايا منطق السلم Ladder Logic Advantages
بعض المزايا التي تتمتع بها أنظمة التحكم بمنطق السلم على أنظمة التحكم بمنطق الريلاى هي:
• يتم تقليل وقت التثبيت Installation time بشكل كبير مع أنظمة التحكم بمنطق السلم نظرًا لانخفاض كمية الأسلاك الصلبة المطلوبة. وبعبارة أخرى ، نحتاج فقط إلى توصيل أجهزة الإدخال والإخراج . يتم تنفيذ منطق التحكم باستخدام برامج software وليست مرحلات سلكية.
• يمكن إجراء تعديلات على منطق التحكم بسهولة باستخدام برنامج لتعديل برنامج منطق السلم بدلاً من تعديلات الأجهزة والأسلاك التي عادة ما تكون هي الحالة مع التحكم بمنطق الريلاى .
• يمكن استخدام نفس PLC لمجموعة واسعة من تطبيقات نظام التحكم عن طريق تحميل برنامج منطق سلم مختلف في ذاكرة PLC.
• تم تبسيط توسيع نظام التحكم باستخدام PLC عن طريق إضافة وحدات التوسع على عكس الأجهزة المعقدة وتعديلات الأسلاك التي ستكون هي الحال مع التحكم في منطق الريلاى .
• يعتمد منطق السلم على المعالجات الدقيقة التي لها أوقات تنفيذ أسرع ، وهي أكثر موثوقية وأطول عمرًا من أنظمة التحكم في منطق الريلاى التي تحتوي على كمية كبيرة من المكونات الميكانيكية.
• أنظمة التحكم بمنطق السلم أصغر بكثير من أنظمة التحكم بمنطق الريلاى.
لذا ، في معركة منطق الريلاى مقابل منطق السلم يمكننا أن نؤكد أن منطق السلم يفوز بالتأكيد. في الواقع يمكن القول أن أنظمة التحكم بمنطق الريلاى للتركيبات الأكبر قد انتهت تقريبًا. لا تزال بعض البلدان لديها لوائح تحكم للوحات التحكم في الموقد ليتم التحكم بمنطق الريلاى ، ولكن بدون شك سيتم استبدالها في النهاية بأنظمة تحكم قائمة على PLC.
بالنسبة لبعض عمليات التركيبات الأصغر حيث تمتلك عددًا قليلاً من الأجهزة للتحكم في الوظائف الأساسية ، لا يزال من السهل استخدام منطق الريلاى للتحكم في التطبيق. ولكن مع السعر الرخيص للمتحكم PLC وسهولة برمجة منطق السلم ، فإنها تزداد جاذبية حتى للتطبيقات الأصغر.

في القسم التالي ، سنستند إلى أساسيات منطق السلم ونكشف القواعد الأساسية السبع التي يجب أن تعرفها من أجل برمجة متحكم منطقى قابل للبرمجة (PLC) مع مخططات منطق السلم جنبًا إلى جنب مع أساسيات تنفيذ برمجة PLC بمنطق السلم.
رد مع اقتباس
إضافة رد

مواقع النشر (المفضلة)

أدوات الموضوع
انواع عرض الموضوع

تعليمات المشاركة
لا تستطيع إضافة مواضيع جديدة
لا تستطيع الرد على المواضيع
لا تستطيع إرفاق ملفات
لا تستطيع تعديل مشاركاتك

BB code is متاحة
كود [IMG] متاحة
كود HTML معطلة



الساعة الآن 07:31 AM.


Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2020, Jelsoft Enterprises Ltd.
الحقوق محفوظة لمنتديات الاليكترونيات العصرية

Security team

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77